

Advanced Nanoporous Composite Materials for Industrial Heating Applications

Towards Low-Cost Nanostructured Refractories

Arlon J. Hunt Michael R. Ayers

E.O. Lawrence Berkeley National Laboratory

Industrial Needs for Nanostructured Refractory Materials

- Insulations:
 - Regenerators, ports, crowns, forebay channel, etc.
- Low thermal-conductivity Refractories
 - Useful in many areas of industry
 - Shorter heat-to-temperature times
 - Other process improvements to maximize throughput
- Desired performance improvements:
 - Lower thermal conductivity
 - Longer life times
 - Increased corrosion resistance
 - Lower cost

Aerogels: Background & Process

- Aerogels: Nanoporous, open-celled solids formed by controlled removal of the liquid phase from a gel.
 - First prepared by Samuel Kistler in 1931
- Typical preparation:
 - Sol-Gel formation of wet gel
 - Hydrolysis-condensation of Alkoxides
 - Organic polymerization
 - Other colloid-forming methods
 - Supercritical drying
 - Alcohol drying
 - CO₂ substitution-drying

Challenges for High Temperature Uses

- Must withstand temperatures of 700-1500 °C
 - Increase sintering resistance
- Must be chemically inert
- Must show reduced thermal conductivity
 - Targets: 0.01-0.10 W/m-K for *Insulations*
 - <0.5 W/m-K for *Refractories*
- Must be affordable
- Composition:

$$x(A_{2}O_{3}) \cdot y(C_{2}O_{3}) or x(0.94A_{2}O_{3}/0.06S_{2}) \cdot y(C_{2}O_{3})$$

Synthesis of Al₂O₃-Cr₂O₃ Aerogels

Sol-Gel preparation via Acid-Base/Redox reactions

$$xAI(OH)_3$$
 + $yCrO_3 \xrightarrow{H_2O} xAI^{3+} \cdot yCrO_4^{2-} \cdot xNO_3^{-}$ (aqueous)

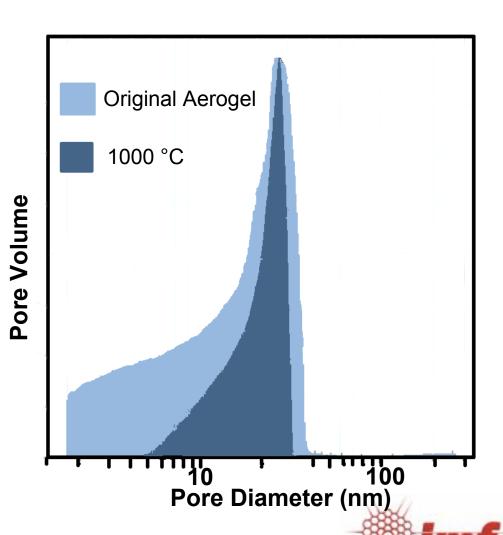
$$xAI^{3+} \cdot yCrO_4^{2-} \cdot xNO_3^ \xrightarrow{\text{ethanol} \atop \text{s.c. CO}_2}$$
 $xAI(OH)_2NO_3 \cdot yCrO_2$ (solid aerogel)

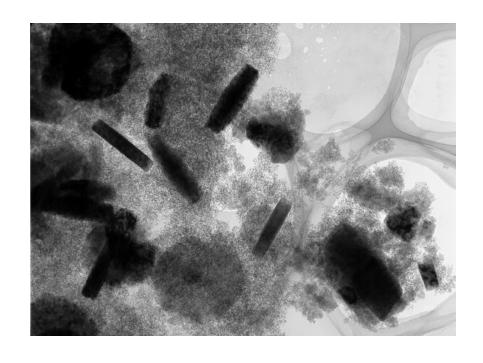
$$xAI(OH)_2NO_3 \cdot yCrO_2 \xrightarrow{1000 \circ C}$$

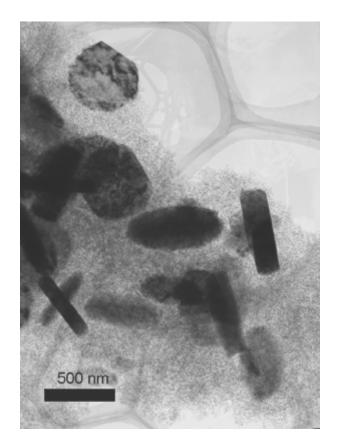
xAl₂O₃ • yCr₂O₃ (nanostructured powder)

Effect of Temperature on Surface Area

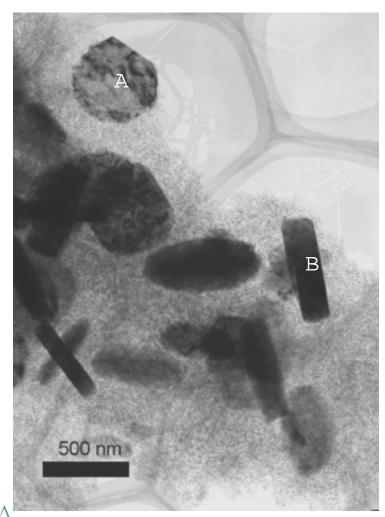
 Surface areas (BET) of various compositions before and after firing (m²/g)

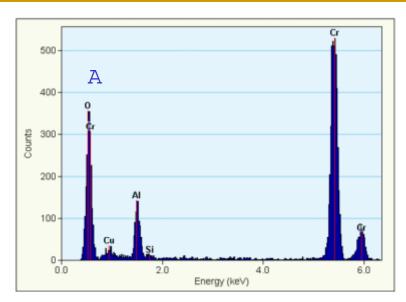

Compound	Neat aerogel	450 °C	1000 °C
Cr ₂ O ₃	290	13	13
$Al_2O_3 \cdot 2Cr_2O_3$	270	180	41
$Al_2O_3 \cdot Cr_2O_3$	260	160	44
$2Al_2O_3 \cdot Cr_2O_3$	240	170	64
$2(0.94\text{Al}_2\text{O}_3 \cdot 0.06\text{SiO}_2) \cdot \text{Cr}_2\text{O}_3$	350		130

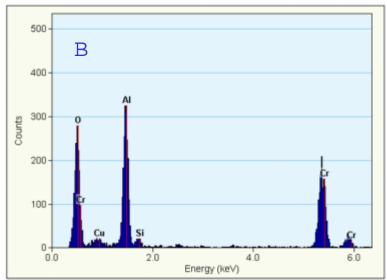

Porosity After Thermal Processing


- Peak of Pore size distribution is ~ 26 nm
- Considerable pore volume between 2-10 nm
- Thermal treatment closes smaller pores
- Peak remains at ~26 nm

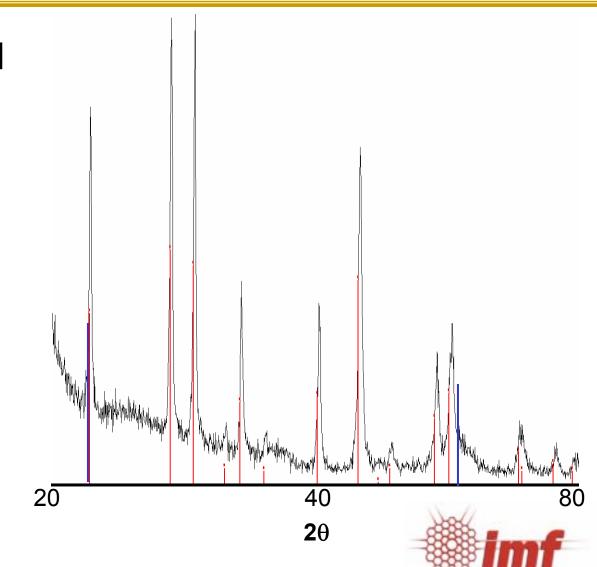
TEM Images of Al₂O₃-Cr₂O₃ Aerogels



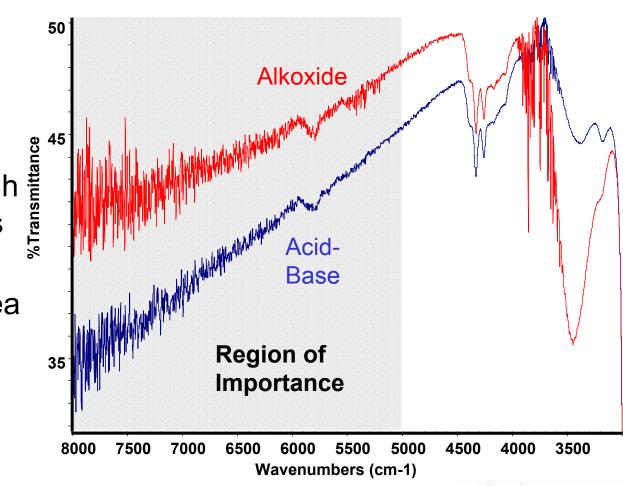

Acid-Base route



EDX Indicates Two Phases



X-Ray Identification


- Acid-base derived aerogel shows one primary crystalline phase:
 - Eskolaite, Cr₂O₃
- Second phase may also be present;
 - $-AI_{1.4}Si_{0.3}O_{2.7}$

Opacity of Al-Cr Aerogels

- 0.1-1.5 micron crystal inclusions scatter incident IR radiation
- Firing leads to a high # density of crystals
- Shows lower transmittance in area of interest
- Material is largely self-opacified

Thermal Conductivity

- Samples of Al₂O₃-Cr₂O₃ aerogel evaluated using the laser flash method at ORNL (MPLUS Program)
 - Low (100-300 °C) temperature thermal conductivity: ~0.15 W/m-k
 - 10X-20X lower than standard Cr- and Albased refractory blocks
 - High temperature testing underway

Low-Cost Raw Materials

- Precursors to Al₂O₃-Cr₂O₃ aerogels are very affordable
 - 81¢ per pound of product vs. \$64/lb for traditional alkoxide precursors

 Other compositions derived from nearmineral precursors to be investigated

Target Application for Al₂O₃-Cr₂O₃ Aerogel

- Originally planned as a backing insulation material
 - Difficult (but possible) to compete with current silica-based products
- IHEA Materials Forum (ORNL Feb '03) revealed a greater need for low thermal conductivity refractories
 - Use this material as an additive to lower the heat loss of current refractories
 - Industrial collaborations planned

Future Work

- Continue characterization of alumina-chromia aerogels
- Begin testing this material as a component of various composite refractory blocks to lower their thermal conductivity
 - Industrial collaborations
- Expand program to look at various other routes to nanostructured materials derived from commodity raw materials
- Develop new "one-pot" synthesis and processing method
 - Greatly increase production throughput.
 - Additional cost savings
- Combine new process with low-cost raw materials
- Pramatic drop in product cost

